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Abstract—Joint channel estimation and decoding using be-
lief propagation on factor graphs requires the quantization of
probability densities since continuous parameters are involved.
We propose to replace these densities by standard messages
where the channel estimate is accurately modeled as a Gaussian
mixture over multipah channel. Upward messages include symbol
extrinsic information and downward messages carry mean values
and variances for the Gaussian modeled channel estimate. Such
unquantized message propagation leads to a complexity reduction
and a performance improvement. Over multipath channel, the
proposed belief propagation almost achieves the performance of
iterative APP equalizer and outperforms MMSE equalizer.

I. INTRODUCTION

Propagating messages in a suitable factor graph [1] is
a systematic tool for deriving iterative algorithms. Among
various receiver issues solved using the belief propagation
algorithm (BP), also called sum-product algorithm [2], we
can cite decoding, channel estimation, synchronization and
detection [3]. [4] presents a BP handling continuous variables,
in which canonical distributions are used for quantizing prob-
ability distributions, in order to propagate discrete probability
distributions. However, the degree of quantization has a strong
impact on estimation accuracy and performance. Even adapt-
ing the quantization in each iteration of BP, as proposed in [5]
and [6], does not fill the complexity gap between BP and other
algorithms. Instead of relying on quantization, we propose
here to model probability distributions as mixtures of Gaus-
sian distributions. It allows for estimation improvement and
complexity reduction simultaneously. The BP with Gaussian
approximation over single path channel has been presented
in [7]. However, in many practical communication systems,
symbols are transmitted over a channel with intersymbol
interference (ISI). In this paper, we focus on BP with Gaussian
approximation over multipath channel.

Over ISI channel, received symbols are usually processed by
an equalizer in the receiver. A number of important equalizers
have been presented in former works, including iterative
a posteriori probability (APP) equalizer [8] and minimum
mean square error (MMSE) equalizer [9]; however, all these
equalizers have to work together with a channel estimator
to obtain the channel coefficients. A factor graph with BP
can help defining the iterative receiver in a systematic way
and implementing joint channel estimation and decoding.

However, the quantization method will make BP unfeasible
over multipath channel. Thus, the proposed Gaussian approx-
imation is required.

The paper is structured as follows. Section II explains how
the transmission system is modeled using a factor graph and
how BP is applied. Section III presents the approximation of
the distribution of channel estimates over multipath channel in
BP by a mixture of Gaussian distributions. In Section IV, APPs
are computed from the approximated distribution. Continuous
upward messages in the factor graph are presented in Sec-
tion V. The paper ends with simulation results in Section VI.

In the sequel, messages that are not based on quantized
densities will be referred to as continuous messages.

II. SYSTEM MODEL AND FACTOR GRAPH

We consider a coded system with transmission over a single-
input single-output (SISO) multi-path channel as shown in
Fig. 1. An information binary sequence bi is encoded and
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Fig. 1. System model.

modulated into N BPSK symbols xk. After convolution with
an impulse response made of L taps, i.e., L complex Gaussian
channel coefficients hl ∼ CN (0, 1/L), and addition of a
complex Gaussian noise nk ∼ CN

(
0, 2σ2

n

)
, the channel

outputs yk are processed by a receiver performing joint
channel estimation and decoding. Finally, the receiver outputs
the estimated information sequence b̂i. The system model is
described by

yk =
L−1∑
l=0

hl xk−l + nk, 0 ≤ k ≤ N − 1. (1)

We re-write (1) in matrix form:

yk = XT
kH + nk, (2)

where Xk = (xk, xk−1, · · · , xk−L+1)
T represents the symbol

vector at time instant k and H = (h0, · · · , hL−1)
T represents

the ISI channel.
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Fig. 2. Factor graph for multipath channel.
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Fig. 3. Message propagation in factor graph.

The corresponding factor graph for 3 taps is built in Fig. 2
following [4], where G is a quantized estimate of H and
p (G) represents the quantized distribution of G. For upward
messages, in node CODE, a forward-backward algorithm
computes the extrinsic information for each coded bit. Taking
deinterleaving into account, the extrinsic information exk is
propagated to nodes xk. In node xk, the message µxk→fk+l

=
ξk,l is obtained by multiplying all messages into xk:

µxk→fk+l
= ξk,l = exk

L−1∏
i=0
i 6=l

µfk+i→xk
, (3)

as shown in Fig. 3(a). From each node fk to node G, a
discrete distribution µfk→G of the quantized estimate of H
is computed and propagated based on a marginalization of
the likelihood p (yk|Xk,G) with respect to the transmitted
symbol Xk, as shown in Fig. 3(b). All µfk→G distributions
are multiplied to build a single common discrete distribution
p(G) as shown in Fig. 3(c):

p (G) =
N−1∏
i=0

µfi→G. (4)

For downward messages, the message µG→fk
is calculated

as shown in Fig. 3(d):

µG→fk
= p (G)

N−1∏
i=0
i 6=k

µfi→G. (5)

By multiplying message µG→fk
and all messages from

Xk,l = (xk, xk−1, · · · , xk−l+1, xk−l−1, · · · , xk−L+1) into fk

(Fig. 3(e)), the APP of each transmitted symbol xk−l is
computed, marginalizing the likelihood p (yk|Xk,G) with
respect to G and Xk,l. The final APP of each coded bit P (xk)
is obtained by multiplying all messages from node fk to xk

(Fig. 3(f)) and then propagated to node CODE. The whole
process of propagating upward and downward messages is
then iterated.

III. DISTRIBUTION OF CHANNEL ESTIMATE

In the iterative receiver, initial estimate is obtained from
known pilots and subsequent estimates from data symbols.
Thus, the distribution of channel estimate will differ depending
on the iteration.

A. Estimation based on pilots

Lp pilots xp,k (0 6 k 6 Lp − 1) are included in the trans-
mitted sequence. From the Lp messages provided by node fp,k

corresponding to pilots, we get the discrete distribution of G
[2]:

p (G) ∝
Lp−1∏
k=0

µfp,k→p(G)

∝
Lq−1∑
i=0

δ (G−Gi)
Lp−1∏
k=0

exp

(
−
|yp,k −XT

pGi|2

2σ2
n

)
, (6)
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where yp,k =
L−1∑
l=0

hl xpk−l + np,k; Xp =
(
xp,0, · · · , xp,Lp−1

)
;

Gi =
(
gi
0, · · · , gi

L−1

)T
is a quantization codebook of size

Lq for channel estimate’s probability density function (pdf)
and δ (·) denotes the Dirac delta function. Using a constant
amplitude zero autocorrelation (CAZAC) sequence as pilots
[10], (6) can be approximated as

p (G) ∝
Lq−1∑
i=0

δ (G−Gi) exp
(
−

LpEp

2σ2
n

|Gi −H|2
)

, (7)

where Ep represents the pilot energy. Hence, p (G) can be

approximated as one Gaussian distribution CN (H,
2σ2

n

LpEp
).

B. Estimation based on data

Let Sk,m = (sk,0,m, sk,1,m, · · · , sk,L−1,m)T, where 0 ≤
m ≤ 2L − 1, represent the mth possible symbol vector
and ξm

k−1,l represent the probability that xk−l = sk,l,m. The
message from node fk to node G can be expressed as [2]:

p (G) ∝
N−1∏
k=0

µfk→G ∝
Lq−1∑
i=0

δ (G−Gi)×

N−1∏
k=0


2L−1∑
m=0

exp

(
−
|yk − ST

k,mGi|2

2σ2
n

)
L−1∏
l=0

ξm
k−l,l


∝

Lq−1∑
i=0

δ (G−Gi)×

2NL−1∑
j=0

exp

(
− 1

2σ2
n

N−1∑
k=0

|yk − SjT
k Gi|2

)
N−1∏
k=0

L−1∏
l=0

ξj
k−l,l,

(8)

where Sj
k =

(
sj

k,0, s
j
k,1, · · · , sj

k,L−1

)T
is the value of symbol

Xk in sequence j and ξj
k−l,l is the probability that xk−l equals

sj
k,l. After some calculations and approximations, (8) can be

approximated as

p (G) ∝
Lq−1∑
i=0

δ (G−Gi)×

2NL−1∑
j=0


L−1∏
l=0

exp

− N

2σ2
n

∣∣∣∣∣∣gi
l −

(
U j

l − V j
l

)
N

hl

∣∣∣∣∣∣
2
×

exp

−N |hl|2

2σ2
n

1−

(
U j

l − V j
l

)2

N2




N−1∏
k=0

ξj
k−l,l

 , (9)

where U j
l (resp. V j

l ) is the number of items with sj
k,lx

∗
k−l =

+1 (resp. sj
k,lx

∗
k−l = −1) in sequence j.

1) With high SNR, the decoder almost provides perfect extrin-
sic information. Thus, for a single sequence j with U j

l = N ,
all ξj

k−l,l → 1 and other terms are null:

p (G) ∝
Lq−1∑
i=0

δ (G−Gi)
L−1∏
l=0

exp
{
− N

2σ2
n

∣∣gi
l − hl

∣∣2}

∝
Lq−1∑
i=0

δ (G−Gi) exp
{
− N

2σ2
n

|Gi −H|2
}

; (10)

2) With low SNR, all probabilities ξj
k−l,l are close to 1/2

for BPSK modulation. In (9), there are 2NL items. However,
when considering the first exponential item in (9), only the

sequences with
(
U j

l − V j
l

)2

≥ N2, i.e., with U j
l = N or

V j
l = N , are not close to zero. Therefore, there are only 2L

dominant terms:

p (G) ∝
Lq−1∑
i=0

δ (G−Gi)
L−1∏
l=0

{
βl exp

{
− N

2σ2
n

∣∣gi
l − hl

∣∣2}
+ (1− βl) exp

{
− N

2σ2
n

∣∣gi
l + hl

∣∣2}} , (11)

where βl denotes the normalized product of ξj
k−l,l; for a single

channel tap, the distribution p (gl) is:

p (gl) ∝
q−1∑
i=0

δ
(
gl − gi

l

){
βl exp

{
− N

2σ2
n

∣∣gi
l − hl

∣∣2}
+(1− βl) exp

{
− N

2σ2
n

∣∣gi
l + hl

∣∣2}} . (12)

From (10), (11) and (12), for each channel tap, the pdf p (gl)
is a mixture of two Gaussian distributions; for the whole ISI
channel, the pdf p (G) can be approximated as a mixture of
multiple Gaussian distributions which are the product of all

pdfs of each tap with variance
2σ2

n

N
.

IV. APP EVALUATION FROM DOWNWARD MESSAGES

With the conclusions in Section III, the discrete channel
distribution p (G) can be approximated as a mixture of
multiple Gaussian distributions. Comparing (5) with (8) and
following the same steps in section III-B, we can easily val-

idate that the discrete distribution of the product
N−1∏
i=0
i 6=k

µfi→G

can also be approximated as a mixture of multiple Gaussian
distributions. However, their mean values and variances are
different, because, in (5), p (G) is obtained from the previous
iteration and µfi→G represents the message in the current
iteration. Furthermore, together with the conclusion in [7], for
each tap, there is always one dominant Gaussian distribution
(with mean value hl). Hence, when calculating APP, we only
consider the dominant one (βl = 1). Then, the discrete

3



distributions of p (G) and
N−1∏
i=0
i 6=k

µfi→G can both be reduced to

L pairs of parameters: (ĥ1,l, σ̂
2
h1) for p (G) and (ĥ2,l, σ̂

2
h2) for

N−1∏
i=0
i 6=k

µfi→G. Thus, p (G) times the product of µfi→G can also

be approximated by a mixture of Gaussian distributions, i.e.,
the discrete distribution of message µG→fk

can be reduced to

L pairs of parameters (ĥ
′

l, σ̂
′2

h), denoted as p
′
(G). Obviously,

(ĥ
′

l, σ̂
′2

h) can be calculated from (ĥ1,l, σ̂
2
h1) and (ĥ2,l, σ̂

2
h2)

that will be shown in the following part. Thus, we can
calculate each downward message µfk→xk−l

in a continuous
way, instead of computing it for each codebook value Gi,
and then marginalizing with respect to G. It reduces the
computation complexity.

With the discrete way, the probability of symbol vector Xk

can be calculated as:

P (Xk = Sk,m) =
Lq−1∑
i=0

exp
{
− 1

2σ2
n

∣∣yk − ST
k,mGi

∣∣2} p
′
(Gi) .

(13)

Equation (13) can be written in a continuous way as:

P (Xk = Sk,m) =
∫
· · ·
∫

︸ ︷︷ ︸
L

exp

− 1
2σ2

n

∣∣∣∣∣yk −
L−1∑
l=0

sk,l,mgl

∣∣∣∣∣
2


L−1∏
l=0

p
′
(gl) dg0 · · · dgL−1. (14)

With some calculations, we have

P (Xk = Sk,m) ∝
L−1∏
l=0

1

σ̂′2

h

l∑
i=0

|sk,i,m|2 + σ2
n

×

exp


−

∣∣∣yk − ST
k,mĤ

′
∣∣∣2

2

(
σ̂′2

h

L−1∑
l=0

|sk,l,m|2 + σ2
n

)


, (15)

where Ĥ
′

=
(
ĥ
′

0, · · · , ĥ
′

L−1

)T
. According to Fig. 3(f), we

have

P (xk = bi) ∝
L−1∏
l=0

∑
sk+l,m,l=bi

P (Xk+l = Sk+l,m) . (16)

Thanks to the computation in (15), a single APP computation
instead of Lq computations is performed for each symbol
vector Xk with the Gaussian approximation. Thus, the global
complexity is much reduced by the Gaussian approximation
in the downward messages.

V. ESTIMATION FROM UPWARD MESSAGES

In order to improve the performance of the Gaussian ap-
proximation, we propose to increase the accuracy of Ĥ using
a continuous upward message.

Replacing the discrete distribution in (8) by an integral, we
get continuous µfk→G and p (G):

p (G) ∝
N−1∏
k=0

µfk→G

∝
2NL−1∑

j=0

exp

{
− 1

2σ2
n

N−1∑
k=0

∣∣∣yk − SjT
k G

∣∣∣2}∆j , (17)

where ∆j =
N−1∏
k=0

L−1∏
l=0

ξj
k−l,l. Thus, we can get the distribution

of gl from (17):

p (gl) ∝
∫
· · ·
∫

︸ ︷︷ ︸
G′

p (G) dG
′
, (18)

where G
′

= (g0, · · · , gl−1, gl+1, · · · , gL−1). After some
complex derivation and approximation, the pdf p (gl) can be
approximately written as

p (gl) ∝
2NL−1∑

j=0

∆jexp
{
− 1

2σ2
n

|gl|2 Ωj
l

}
×

exp


1

2σ2
n

2<e

g∗l Φj
l − g∗l

L−1∑
i=0
i 6=l

Φj
i

Ωj
i

Rj
i,l


 , (19)

where Φj
l =

N−1∑
k=0

yksj∗
k,l, Ωj

l =
N−1∑
k=0

∣∣∣sj
k,l

∣∣∣2 and Rj
i,l =

N−1∑
k=0

sj
k,is

j∗
k,l. Using (19) and considering normalization, we

get

ĥl =

∫
gl

glp (gl) d gl∫
gl

p (gl) d gl

≈ 1

Ω̃l

Φ̃l −
L−1∑
i=0
i 6=l

Φ̃i

Ω̃i

R̃i,l

 , (20)

where

Φ̃l =
N−1∑
k=0

yk

∑
m

s∗k,l,mξm
k,l,

R̃i,l =
N−1∑
k=0

(∑
m

sk,i,mξm
k,i

)(∑
m

s∗k,l,mξm
k,l

)
,

and Ω̃l ≈ NEav. Here, Eav represents the average power of
transmitted symbols.
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With (20), we can get Ĥ1 =
(
ĥ1,0, · · · , ĥ1,L−1

)
for p (G)

by using the messages ξk,l in previous iteration and Ĥ2 =(
ĥ2,0, · · · , ĥ2,L−1

)
for the product of µfi→G by using the

messages ξk,l in current iteration. Together with σ̂2
h1 and σ̂2

h2,
we can get

ĥ
′

l =
σ̂2

h2ĥ1,l + σ̂2
h1ĥ2,l

σ̂2
h1 + σ̂2

h2

(21)

and

σ̂′2

h =
σ̂2

h1σ̂
2
h2

σ̂2
h1 + σ̂2

h2

, (22)

where the value of σ̂2
h1 and σ̂2

h2 can be obtained from (7) and

(9):
2σ2

n

Lp
for pilot case and approximately

2σ2
n

N
for data case.

VI. NUMERICAL RESULTS

Some simulation results are shown in this section for an
ISI Rayleigh channel with 3-tap rectangular impulse response.
We use a half rate 64-state (133, 171) convolutional code
and BPSK modulation. The pseudo-random interleaver size
is 1000. The number of pilots is 18.

The proposed BP with continuous downward and upward
messages (BP-DUGA) is compared with iterative APP equal-
izer (APPEQ) and MMSE equalizer, both using EM channel
estimation. From Fig. 4, we observe that the proposed BP-
DUGA has better BER performance with perfect channel
state information (PerCSI) than MMSE equalizer – about
1dB for 10−5 – where K = 11 represents the number of
complex-valued tap weight coefficients of the equalizer. With
5 iterations, it also outperforms MMSE+EM. From Fig. 5, we
observe that BP-DUGA has BER performance very close to
that of iterative APP equalizer with PerCIS and EM channel
estimation. Using continuous downward and upward messages
brings a complexity reduction compared to the quantization
method.

VII. CONCLUSION

Thanks to an approximation of the distribution of the
channel estimate as a mixture of Gaussian distributions, we
improved the performance of BP and reduced its complexity
by propagating continuous messages in the factor graph for
multipath channel. The proposed BP-DUGA almost achieves
APPEQ performance and outperforms MMSE equalizer. This
paper is focusing on BPSK modulation. Nevertheless, the
extension of the Gaussian approximation principle to a higher
level modulation scheme is natural.
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