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On the Degrees-of-Freedom
of the K-user Distributed Broadcast Channel

Antonio Bazco-Nogueras, Member, IEEE, Paul de Kerret, Member, IEEE,
David Gesbert, Fellow, IEEE, and Nicolas Gresset, Senior Member, IEEE

Abstract—We study the Degrees-of-Freedom (DoF) in a wire-
less setting in which K Transmitters (TXs) aim at jointly serv-
ing K users. The performance is studied when the TXs are faced
with a distributed Channel State Information (CSI) configuration
in which each TX has access to its own multi-user imperfect chan-
nel estimate based on which it designs its transmit coefficients.
The channel estimates are not only imperfectly acquired but they
are also imperfectly shared between the TXs. Our first contribu-
tion consists of computing a genie-aided upper bound for the DoF
of that setting. Our main contribution is then to develop a new
robust transmission scheme that leverages the different qualities
of CSI available at the TXs to improve the achieved DoF. We show
the surprising result that there is a CSI regime, coined the Weak-
CSIT regime, in which the genie-aided upper bound is achieved
by the proposed transmission scheme. Interestingly, the optimal
DoF in the Weak-CSIT regime only depends on the CSI quality at
the best informed TX and not on the CSI quality at all other TXs.

Index Terms—Degrees-of-Freedom (DoF), Network MIMO,
Broadcast Channel, decentralized wireless networks.

I. INTRODUCTION

A. Limited Channel State Information on the Transmitter Side

CHANNEL capacity characterization of multi-user wireless
networks is known to be an elusive problem for many

practical scenarios, in particular for the cases in which the
Channel State Information at the Transmitter (CSIT) is not
perfect. In order to tackle this problem, capacity approximations
at high Signal-to-Noise Ratio (SNR), such as Degrees-of-
Freedom (DoF) analysis [3], have been used as a first step
towards the complete characterization of the system capacity,
and they have successfully led to many important insights.
For example, the DoF of the MISO Broadcast Channel (BC)
with imperfect noisy CSIT was characterized by Davoodi and
Jafar in [4] by showing that a CSIT error variance scaling in
SNR−α, for α ∈ [0, 1], leads to a DoF of 1 + (K − 1)α.

A different line of work in the area of BC with limited
feedback has been focused on the exploitation of delayed CSIT.
This research area was triggered by the seminal work from
Maddah-Ali and Tse [5] where it was shown that completely
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outdated CSIT could still be exploited via a multi-phase
protocol involving the retransmission of the interference
generated. While the original model assumed completely
outdated CSIT, a large number of works have developed
generalized schemes for the case of partially outdated [6]–[8],
alternating [9], or evolving CSIT [10], to name just a few.

In all the above literature, however, centralized CSIT is
typically assumed, i.e., the transmission is optimized at the
TX side on the basis of a single imperfect/outdated channel
estimate being common at every transmit antenna. Recently,
the increasing importance of cooperation of non-collocated
TXs—as, for example, in Unmanned Aerial Device (UAV)
aided networks [11]—has led to an increasing number of works
challenging this assumption of centralized CSIT. In [12], [13],
methods have been developed to reduce the CSIT required
to achieve MIMO Interference Alignment (IA), and the DoF
achieved with delayed and local CSIT in the Interference
Channel (IC) has been also studied in several works [14]–[16].
Furthermore, the assumption of centralized CSIT has been
challenged in capacity analysis for the Multiple Access
Channel [17] and the Relay Channel [18], among others.

B. Network MIMO with Distributed CSIT Model

In order to account for TX-dependent limited feedback
in the network MIMO channel, we focus in this work on a
wireless configuration first studied in [19], in which the user’s
data symbols are available and jointly transmitted from all
TXs, whereas the channel estimates could only be imperfectly
obtained at the TXs. This network MIMO setting can be
seen as a Distributed BC setting. We will show below why
such assumptions, although seemingly contradictory at first
sight, are actually very relevant in current wireless networks,
and even more in future 5G-and-beyond networks. Yet, let us
first try to convey the main intuition before diving in a more
detailed and precise discussion: In many scenarios of interest,
the latency constraint for data delivery is significantly looser
than the CSI outdating constraint (which is related to the
coherence time, and hence very short in many relevant mobility
scenarios). This has for consequence that the data caching or
sharing between TXs can be achieved in practice while timely
CSI acquisition and sharing becomes the main bottleneck.

Imperfect CSI Acquisition and Sharing

We consider in this work a TX-dependent limited feedback
where each TX receives its own multi-user imperfect estimate.
This CSIT configuration is coined as the Distributed CSIT
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configuration (D-CSIT), in opposition to the aforementioned
centralized CSIT model. The imperfect multi-user channel esti-
mate is obtained at the TXs from a CSI acquisition and sharing
mechanism not discussed in this work. Yet, due to unavoidable
delay and imperfections in the CSI sharing mechanism, this
CSI sharing step leads to a setting where the TXs have received
different imperfect estimates of the true channel. We provide
below several practical examples that are illustrated in Fig. 1.

Example 1. In a network with several Base Stations (TXs)
cooperating to jointly serve their users, each TX obtains
feedback from its attached user such that each TX knows
accurately only a part of the channel state information. For
example, in Time Division Duplexing (TDD) transmission
with reciprocity, each TX acquires a good estimate of its local
channel; instead, in Frequency Division Duplexing (FDD)
with user feedback, each TX obtains a good estimate of the
whole channel vector towards its attached user.

Considering a CSI exchange step with heterogeneous links
in the sense that one direction is of better quality, requires
less quantization, or introduces less delay (which is a very
reasonable assumption when considering heterogeneous
networks where some of the TXs are UAVs [11], [20] or
vehicles [21]), we obtain a setting where one of the TXs is
uniformly more informed than the other. A particular example
is depicted in Fig. 1.a, in which the link between TX 2 and
TX 3 is a limited Device-to-Device (D2D) link.

Example 2. Let us consider the previous setting in the case
where the CSI exchange is limited by a very restrictive delay.
Then, the sharing can be done by a transmission of the
accurate CSI to a specific (main) TX, which then forwards
a coarser version of the whole channel matrix to all TXs due
to delay constraints. This retransmission from the main TX
could also be broadcast, such that the resources spent on
the sharing are reduced. Using layered encoding [22], every
TX would obtain an estimate with a different accuracy. This
setting is shown in Fig. 1.b.

Example 3. In a wireless network with one principal TX
receiving feedback from all served users and several remote
radio heads helping in the joint transmission, a distributed
CSIT configuration is obtained when the CSI sharing from the
main TX to the remote radio heads is done using limited and im-
perfect communication links, as illustrated in Fig. 1.c. It could
also be envisioned that the remote radio heads directly acquire
low precision channel state information from direct feedback
from the users by means of layered encoding [22] or analog
feedback [23]. Due to the weaker capabilities of the remote
radio heads, a Distributed CSIT (D-CSIT) configuration with
homogeneous quality at each TX would then be obtained.

The analysis and the design of this CSI acquisition
mechanism is an important research topic per-se and is
consequently out of the scope of this paper and not further
discussed. We assume in the following that this CSI acquisition
step has already occurred through limited and imperfect
communication links and has led to each TX having access
to its own imperfect estimate of the multi-user channel state.

User’s Data Symbols Caching

Our second main assumption comes from the fact that the
user’s data symbols are available at all TXs. This is made
possible without putting in question the scenario described
before because of two recent major techniques envisioned for
future 5G-and-beyond wireless networks: Caching [24]–[26]
and Cloud-Ran/Fog-Ran [27], [28].

Through caching, the user’s data symbols are pre-fetched at
the TX nodes before the transmission occurs [25]. Caching is
an increasingly important feature that already exists in many
scenarios [29], [30] and is envisioned in many more [31]. With
the user’s data symbols available at the TXs, even at mobile and
cost-efficient ones, the accurate and timely acquisition of the
multi-user channel becomes the main bottleneck for efficient
interference reduction. This leads to a D-CSIT configuration
wherever the cooperation links are not of sufficient quality.

In the Cloud-RAN paradigm, the centralization of the
processing of all nodes is envisioned so as to gain full benefits
of cooperation. This centralization is however limited by its
cost and its delay, such that partial centralization is considered
a promising solution [32]. Considering decentralized precoding
at the TXs allows to reduce the delay in CSI acquisition. In
that case, the backhaul links are solely used to convey the
user’s data since, for many data-oriented applications, the
application’s latency requirements are orders of magnitude
slower than the rate at which the fading channel evolves.
The CSI estimates are directly exchanged between the TXs
through direct links, thus reducing the delay of the complete
CSI acquisition at the TXs. This CSI exchange between TXs
through limited resources also leads to a D-CSIT configuration.

Previous Works

In [33], the finite-SNR performance of regularized Zero-
Forcing (ZF) under distributed CSIT has been computed in
the large system limit, and heuristic robust precoding schemes
have been provided in [34], [35] for practical cellular networks.
In terms of DoF, it was shown in a previous work [19] that
using a conventional ZF precoder (regularized or not) leads to a
severe DoF degradation caused by the lack of a consistent CSI
shared by the cooperating TXs. Exploiting the fact that there is
a single interfered user in the two-user case, it was shown that
exploiting the CSIT at a single TX was sufficient to completely
suppress the interference, thus recovering from the DoF loss
due to the D-CSIT setting. This result was extended in [36] to
the Generalized DoF (GDoF) [37], where it was shown that the
2-user case centralized GDoF is recovered for any path-loss
topology and CSIT allocation. In [38], a Deep Learning based
robust precoder was proposed. This approach has been then ex-
tended in [39] to settings with a cooperation link between TXs
and further generalized in [40] to arbitrary topologies with local
CSI at the TXs. An overview of the use of Machine Learning for
the physical layer of wireless communications with a particular
focus on such decentralized applications can be found in [41].

The extension of the high SNR results for the two-user
setting to an arbitrary number of users is not straightforward
and has remained an open problem for several years. Tackling
this challenging problem is the focus of this work.
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H(2) = [ȟ1,h2, ȟ3]
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Figure 1: Schematic illustration of three different example scenarios with distributed CSIT. FDD transmission is assumed.
hi denotes the (highly accurate) estimate of user i’s channel that is fed back to the attached TX. H(j) denotes the CSI matrix
obtained at TX j after cooperation. Ȟ(j) and ȟi represent a quantized/coarse version of the respective estimates, transmitted
through limited backhaul communications.

C. Main Contributions

Our main contributions read as follows:
• We compute the DoF of a genie-aided setting where all

TXs are given the knowledge of all the channel estimates
at all TXs, the so-called centralized upper bound.

• We show the surprising result that this bound is actually
tight for a range of D-CSIT configurations, coined the
Weak-CSIT regime and defined rigorously further down.
Interestingly, the optimal DoF for such D-CSIT regime
only depends on the CSIT quality at the most informed
TXs. Sharing the instantaneous CSIT among the TXs
is hence not necessary for achieving the genie-aided
centralized DoF and does not improve the optimal DoF.

• Building on the fundamental principles of the previous
scheme, we derive a robust transmission scheme adapted
to any CSIT configuration and any number of users,
and which significantly improves the achieved DoF with
respect to state-of-the-art methods.

A byproduct of our work which completes our main
contributions is the development of new methods used as
building blocks to our main algorithm, and which are of
interest by themselves for other applications. The first one
is the non-trivial extension of the Active-Passive precoding
scheme introduced in [19]. Specifically, we extend the scheme
to multiple passive TXs which turns out to be essential to
transmit multi-stream transmissions to a single-antenna user
and hence create an overloaded transmission. The second
method is the translation to the distributed CSIT setting of
the idea introduced by Maddah-Ali and Tse in [5] consisting
in estimating and retransmitting the interference generated. In
contrast to [5], the interference terms are estimated before they
even take place and are retransmitted in the same time slot.
This principle could be applied in other wireless configurations

where some nodes are more informed than others.
Notations: We denote the probability density function of a

variable X as fX (x). For a conditional probability density func-
tion, the simplified notation fX|Y(x|y) stands for fX|Y(X =
x|Y = y). The circularly symmetric complex Gaussian distribu-
tion with mean µ and variance σ2 is denoted by NC(µ, σ2). We
use .

= to denote exponential equality, i.e., we write f(P )
.
= P x

to denote limP→∞
log f(P )

logP = x. The exponential inequalities
≤̇ and ≥̇ are defined in the same way. We also consider the
conventional Landau notation with a slight variation, such that
f(x) = O(g(x)) stands for limx→∞

|f(x)|
|g(x)| = a, with 0 < a <

∞, and f(x) = o(g(x)) stands for limx→∞
|f(x)|
|g(x)| = 0. We use

the shorthand notation K , {1, . . . ,K}. Given a matrix A, the
sub-matrix obtained by taking from A the rows {ri, . . . , rj}
and the columns {ci, . . . , cj} is denoted by Ari:rj ,ci:cj .

II. SYSTEM MODEL

A. Transmission Model

We study a communication system where K TXs jointly
serve K users (RXs) over a Network (Broadcast) MISO
channel. We assume a D-CSIT configuration, where each
TX has access to its own CSIT. Hereinafter, we denote this
setting as the K-user MISO BC with distributed CSIT. We
consider that both TXs and RXs are equipped with a single
antenna. The assumption of single-antenna TX is done for
ease of exposition, and the extension to multiple-antenna TX
is straightforward. The signal received at RX i is written as

yi = hH
i x + zi, (1)

where hH
i ∈ C1×K is the channel vector towards RX i,

x ∈ CK×1 is the transmitted multi-user signal, which satisfies
an average power constraint E[‖x‖2] ≤ P , and P is the
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maximum transmit power. zi ∈ C is the additive noise
at RX i, independent of the channel and the transmitted
signal, and distributed as NC(0, 1). We further define the
channel matrix H , [h1, . . . ,hK ]H ∈ CK×K and the channel
coefficient from TX k to RX i as Hi,k. The channel is assumed
to be drawn from a continuous distribution with density
such that all the channel matrices and all their sub-matrices
are full rank with probability one. Furthermore, the channel
coefficients are assumed to change after one channel use and
to be independent from one channel use to another.

The transmitted multi-user signal x is obtained from the
symbol vector s ∈ Cb×1 having its elements independently
and identically distributed (i.i.d.) according to NC(0, 1),
where b is the number of independent data symbols delivered.
We will differentiate in this work between the private data
symbols, destined to be decoded at a particular user, and the
common data symbols, broadcast and destined to be decoded at
all users. Note that the term private is used only in contrast to
common and does not refer to any privacy/secrecy constraint,
but to the fact that only one user will decode the symbol.

B. Distributed CSIT Model

The Distributed CSIT (D-CSIT) setting differs from the
conventional centralized one in that each TX receives a possibly
different multi-user CSI, based on which it designs its own trans-
mission parameters without any additional communication with
the other TXs. Specifically, TX j receives the imperfect multi-
user channel estimate Ĥ(j) = [ĥ

(j)
1 , . . . , ĥ

(j)
K ]H ∈ CK×K ,

where (ĥ
(j)
i )H refers to the estimate at TX j of the channel from

all TXs towards RX i. TX j then designs its transmit coeffi-
cients solely as a function of Ĥ(j) and the statistics of the chan-
nel. This scenario can be seen as a multi-agent cooperative de-
cision with common goal, where each node knows the structure
of the system but not the information that the others own [42].

Remark 1. It is critical to this work to understand well how
the Distributed CSIT setting differs from the many different
heterogeneous CSIT configurations studied in the literature.
Indeed, a heterogeneous CSIT configuration typically refers to a
centralized CSIT setting (i.e., with a channel estimate common
to all TXs), where each element of the channel is known with
a different quality owing to specific feedback mechanisms [43]–
[46]. In contrast, the distributed setting considered here has
as many different channel estimates as TXs, and each TX does
not have access to the CSIT knowledge at the other TXs.

We follow the conventional model in the literature [6]–[8],
[47] to model the dependency of the CSIT accuracy as a
function of the SNR, such that the channel estimate at TX j
is given by

Ĥ(j) = H + P̄−α
(j)

∆(j), (2)

where P̄ ,
√
P and P is the nominal SNR parameter.

∆(j) ∈ CK×K is a random variable with zero mean and
bounded covariance matrix. The scalar α(j) is called the CSIT
scaling coefficient at TX j and represents the average accuracy
of the estimate at TX j. Following insights obtained from

α(1) α(2) · · · α(j) · · · α(K)

s ∈ Cb

H ∈ CK×K

x ∈ CK

Ĥ(j) ∈ CK×K

Ĥ(1) Ĥ(2) Ĥ(j) Ĥ(K)

hH
i ∈ C1×K

Figure 2: K×K Distributed Broadcast Channel. The accuracy
of the channel estimate at TX j is modeled through the CSIT
scaling coefficient α(j).

the analysis of the centralized CSI configuration [4], [48], we
focus in this work on the configurations where α(j) ∈ [0, 1].

Remark 2. For the centralized case, it is shown in [4] that, if
the CSI accuracy does not improve polynomially with the SNR
(i.e., a CSIT scaling coefficient equal to 0), the channel estimate
leads to no DoF improvement. Similarly, a CSIT scaling
coefficient equal to 1 is shown to be sufficient to attain the
DoF obtained with perfect CSIT. These results are in fact very
intuitive when considering the scaling of the interference.

For later use, we also denote the i-th row of ∆(j) as
(δ

(j)
i )H, such that

ĥ
(j)
i = hi + P̄−α

(j)

δ
(j)
i . (3)

In this work, we restrict the D-CSIT model to the case of
homogeneous CSIT quality at a given TX, such that every
channel coefficient is known at TX j with the same average
CSIT quality α(j), as it can be seen in (2). This limitation
is not inherent to the D-CSIT model and it is solely done
here for simplicity. How to deal with different CSIT qualities
for the different channel coefficients is a topic of undergoing
research, and it is out of the scope of this work.

Given that one TX has the same CSIT quality (α(j)) for
all channel coefficients, we can order the TXs without loss
of generality such that

1 ≥ α(1) ≥ α(2) ≥ · · · ≥ α(K) ≥ 0. (4)

The multi-user distributed CSIT configuration can be hence
represented through the multi-TX CSIT scaling vector α ∈ RK
defined as

α ,
[
α(1), . . . , α(K)

]T
. (5)
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The parameters α represent the average accuracy of the
estimates. They are long-term coefficients that vary slowly in
time and can be easily shared to all TXs. Consequently, the
parameters α are assumed in the following to be fixed and
known at all TXs.

Our upper bound builds on the centralized upper bound
of [4]. On that account, and for the sake of completeness,
we recall the Bounded Density assumption introduced in [4],
which is necessary for the proof of the upper bound.

Definition 1 (Bounded Density Coefficients [4]). A set of
random variables, A, is said to satisfy the bounded density
assumption if there exists a finite positive constant fmax,

0 < fmax <∞, (6)

such that for all finite cardinality disjoint subsets A1, A2 of
A, A1 ⊂ A, A2 ⊂ A, A1 ∩ A2 = ∅, |A1| < ∞, |A2| < ∞,
the conditional probability density functions exist and are
bounded as follows

∀A1, A2, fA1|A2
(A1|A2) ≤ f |A1|

max . (7)

We assume hereinafter that all channel realizations Hi,k

and estimation noise variables ∆
(j)
i,k satisfy the bounded

density property. Furthermore, the channel realizations and
the estimation noise are mutually independent.

C. CSIR Model

In this work, we focus on the impact of the imperfect CSI on
the TX side as the CSI acquisition is widely acknowledged to be
more challenging on the TX side than on the RX side in FDD,
because the CSI that has been estimated at the RX needs to be
fed back towards the TX. Therefore, we consider that every RX
has perfect knowledge of its own channel. As in the important
literature on delayed CSIT [5]–[10], to name just a few, we
assume that the RX has been able to obtain perfect knowledge
of the multi-user channel, i.e., also the channel to the other
users. This assumption is key to the approach used in this work.

However, it is also important to note that this assumption can
be weakened in our work as it is sufficient for the RXs to obtain
the multi-user CSIT up to the best CSIT quality across the TXs
(not necessarily the same estimate, but of the same quality).
Furthermore, the estimate should be made available at the RX
for the decoding, such that its latency constraint stems from
the user’s data, not from the time coherency of the channel.

D. Degrees-of-Freedom Analysis

We assume that every user i ∈ K wishes to receive
message Wi ∈ Wi. After n channel uses, the rate Ri(P ) is
achievable for RX i if Ri(P ) = log |Wi|

n and the probability of
wrong decoding goes to zero as n goes to infinity. The sum
capacity C(P ) is defined as the supremum of the sum of all
achievable rates [49]. The optimal sum DoF in the D-CSIT
setting with CSIT scaling coefficients α ∈ RK is defined by

DoFDCSI(α) , lim
P→∞

C(P )

log2(P )
. (8)

III. MAIN RESULTS

As a preliminary, let us first state the optimal DoF of the
centralized K-user BC setting where a single estimate with
CSIT scaling coefficient α is perfectly shared by all TXs.
It was shown in [4] that the sum DoF in that configuration,
denoted by DoFCCSI(α), is equal to

DoFCCSI(α) = 1 + (K − 1)α. (9)

We can now present our main results.

A. Upper Bound

Theorem 1. The optimal sum DoF of the K-user MISO BC
with Distributed CSIT satisfies

DoFDCSI(α) ≤ DoFCCSI(α(1)). (10)

Proof: The proof relies on the following lemma whose
technical proof is relegated to Appendix II for clarity.

Lemma 1. Let Ĥ(j) , H + P̄−α
(j)

∆(j), where H, ∆(j),
∀j ∈ K, are independent continuous random variables sat-
isfying the Bounded Density assumption. Then, the conditional
probability density function fH|Ĥ(1),...,Ĥ(K) satisfies that

max
H

fH|Ĥ(1),...,Ĥ(K) = O
(
P̄maxj∈K α

(j))
. (11)

Let us now consider a genie-aided scenario where all channel
estimates are exchanged between all the TXs. Such setting cor-
responds to a (logically) centralized scenario with a shared CSI
composed by {Ĥ(1), . . . , Ĥ(K)}. Using Lemma 1, we obtain
that the peak of the probability density function of this genie-
aided scenario with multiple estimates has the same scaling as
the centralized setting endowed only with Ĥ(1). Then, it follows
directly from the proof in [4, Section V.8] that the DoF of the
genie-aided scenario, denoted by DoFCCSI

genie (α), is given by

DoFCCSI
genie (α) = DoFCCSI

(
α(1)

)
. (12)

From this equivalence, and the fact that providing with more
information does not hurt, the proof is concluded.

Remark 3. Lemma 1 is expected to hold for a more general
group of distributions, i.e., including cases where the different
noise variables are partially correlated. Indeed, for the
Gaussian case where the noise variables {∆(j)

i,k}∀j∈K are
drawn from partially correlated jointly Gaussian distributions,
it is easy to show analytically that (11) is also satisfied.

B.1) Achievability: Weak-CSIT Regime

Theorem 2. Let us assume that the m first TXs have the same
accuracy, i.e., α(1) = · · · = α(m), m < K. Then, the sum
DoF of the K-user MISO BC with Distributed CSIT satisfies

DoFDCSI(α) ≥ DoFCCSI(α(1)) (13)

if α(1) ≤ αWeak
m , where αWeak

m is defined as

αWeak
m ,

1

1 +K(K −m− 1)
, (14)

and is called the “m-TX Weak-CSIT” regime. For m = 1, we
simplify the notation and call it the “Weak-CSIT” regime.
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Proof: The result follows directly from the analysis of
the proposed scheme presented in detail in Section V.

In the so-called Weak-CSIT regime, the upper bound
of Theorem 1 is tight. Surprisingly, for m = 1, the most
heterogeneous case, the DoF depends only on the CSI quality
of TX 1, although with the downside of reducing the range
of possible CSIT configurations. For m = K − 1, it holds that
αWeak
K−1 = 1 and hence the Weak-CSIT regime encloses every

possible value of α(1), which is consistent with the simple use
of single-stream Active-Passive Zero-Forcing (AP-ZF) in [19].

Remark 4. The fact that it is possible to achieve the DoF of
the centralized upper bound with uniformed or badly informed
TXs is a surprising result which is not expected to extend to
many other CSIT configurations. Indeed, for linear schemes, it
can be intuitively seen using basic linear algebra that at least
K − 1 TXs are necessary to cancel K − 1 ZF constraints.

B.2) Achievability: Extension to Arbitrary CSIT Configurations

Theorem 2 presents the CSIT regime for which the upper
bound of Theorem 1 is tight. In the following, we present
a robust transmission scheme that builds on the scheme
attaining Theorem 2 but which is extended to adapt to any
CSIT configuration. The main challenge comes from the
large number of CSIT scaling parameters, which leads to
an even larger (combinatorially large) number of possible
CSIT configurations depending on their relative values. Before
presenting the achievability result, we define three terms that
play an important role in the proposed scheme.

Definition 2 (Transmitting TX). A TX is said to be a
“Transmitting TX” if it is connected and sends information to the
RXs. It may or may not use its instantaneous CSI for precoding.

This definition is made necessary by the distributed nature
of the CSIT. Indeed, in contrast to the centralized setting
where adding antennas cannot reduce the performance [45],
[50], using additional antennas in the distributed setting can
decrease the achievable DoF by creating additional interference.
Hence, although we are considering a setting with K TXs,
it may be beneficial in some CSI configurations to “turn off”
some TXs and use a smaller number of “Transmitting TXs”.

Definition 3 (Active TX). A TX is said to be an “Active TX” if
it is a Transmitting TX and it makes use of its instantaneous CSI.

Definition 4 (Passive TX). A TX is said to be a “Passive TX”
if it is a Transmitting TX but it does not make use of its
instantaneous CSI.

A more thorough explanation of these definitions and their
relevance is provided later on, along with the description of
the proposed scheme. In brief, it will become clear that the
two critical parameters to optimize are both the number of
“Transmitting TXs” and the number of “Active TXs”. In relation
to these two notions, we introduce the following definition.

Definition 5 (Transmission Mode (n, k)). We define the
Transmission Mode (n, k) as a transmission where only
k Transmitting TXs and n ≤ k Active TXs are used.

Building on these definitions, the following lower bound
is exactly obtained by optimizing the performance of the
proposed scheme over the different Transmission Modes.

Theorem 3. The sum DoF of the K-user D-CSIT BC with
CSIT scaling coefficients α is lower-bounded by the solution
of the next linear program, which we denote as DoFAPZF(α):

maximize
γn,k

K∑
k=2

k−1∑
n=1

γn,k
(
1 + (k − 1)α(n)

)
(15)

subject to

K∑
k=2

k−1∑
n=1

γn,k = 1, γn,k ≥ 0 (16)

K∑
k=2

k−1∑
n=1

dn,kγn,k ≥ 0, (17)

where γn,k is a time-sharing variable representing the
percentage of time allocated to the Transmission Mode (n, k),
and dn,k , 1− α(n) − k(k − n− 1)α(n).

Proof: The transmission scheme for a particular
Transmission Mode is described in Section V and, building on
this result, the explanation and proof of the theorem is given
in Section VI.

The transmission scheme and the achieved DoF are obtained
by solving a simple linear programming problem with low
complexity. Interestingly, the expression 1 + (k − 1)α(n) in
(15) corresponds to the DoF of the k-user centralized setting
with k TXs having access to a CSIT of quality α(n) (See (9)).

Remark 5. The linear program of Theorem 3 depends only
on the K − 1 best CSIT coefficients and not on α(K). This
property was already highlighted in [19] and follows from
the fact that it is possible to solve K − 1 linear equations
with K − 1 Active TXs, which means removing interference at
K − 1 users, and thus serving K users at the same time. As
consequence, it can always be assumed that α(K) = 0 without
reducing the DoF.

Furthermore, we can show that time sharing between only
two Transmission Modes is sufficient.

Corollary 1. The solution of the linear program in Theorem 3
is composed only of two Transmission Modes, (n1, k1) and
(n2, k2), such that γn1,k1

> 0, γn2,k2
≥ 0, and γn,k = 0 for

any pair (n, k) /∈ {(n1, k1), (n2, k2)}.

Proof: The proof is relegated to Appendix III.

Remark 6. The Distributed CSIT setting here assumed and
the Delayed CSIT setting share an important feature: It is not
possible to cancel out all the interference. However, the means
for solving this challenge at each setting differ considerably.
For the Distributed CSIT setting, the best strategy consists
on overloading the transmission so as to use the interference
created as side information that is useful at different RXs.
In addition, the more RXs receive interference, the more
overloaded the transmission has to be. Corollary 1 reflects
the main insight: If there are two modes of transmission, the
first one is a generator of interference, i.e., it creates side-
information at the RXs through the overloaded transmission.



7

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Weak-CSIT
Region

Zero-Forcing ∀α(3)

α(1)

Su
m

D
oF

Centralized upper bound
α(3) = 0.99α(1)

α(3) = 0.75α(1)

Lower bound α(3) = 0

Figure 3: Sum DoF for the case with K = 4 TXs, α(2) = α(1),
and α(4) = 0, for different values of α(3) as a function of α(1).

Then, it relies on a successive second Transmission Mode
to retransmit some of this interference (side information) in
order to decode the overloaded transmission. When only one
mode is used, the interference is directly retransmitted through
rate splitting using the common data symbol.

We show in Fig. 3 the DoF as a function of α(1) for a
setting with K = 4 TXs and α(2) = α(1), and we compare the
achievable DoF with the centralized upper bound for different
values of α(3). The centralized upper bound is achieved for any
α(1) ≤ 0.2 = αWeak

2 , no matter the value of α(3) (as stated in
Theorem 2). The upper bound is also achieved when α(3) be-
comes equal to α(1), which is consistent with the results in [19].

In Fig. 4, we show the DoF achieved by AP-ZF for
a network with K = 4 TXs when fixing the number of
Transmitting TXs (i.e., the value of k in Theorem 3) for
the specific case where α(1) = 1, α(3) = α(4) = 0, and α(2)

varies from 0 to 1. Depending on the value of α(2), it is
optimal to use either 2 Transmitting TXs or 3 Transmitting
TXs, but never K = 4 Transmitting TXs.

IV. A SIMPLE EXAMPLE

We present in the following a simple transmission scheme
in a toy example so as to exemplify the key features of our
approach and convey the main intuition in a clear manner.
The full scheme achieving the DoF of Section III will be
described in Section V.

We consider a 3-user setting with α(1) = 0.1, α(2) = 0, and
α(3) = 0. The conventional regularized Zero-Forcing would
achieve a DoF of 1 [1], which is the same as for the no CSIT
scenario. We will show how it is possible to achieve a DoF
of 1 + 2α(1) = 1.2, which is the DoF that would be achieved
in a centralized setting if TX 2 and TX 3 had received the
same estimate as TX 1 [4], such that there is no DoF loss
from not sharing the CSIT between the TXs.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

α(2)

Su
m

D
oF

Maximum sum DoF
Sum DoF transmitting with k = 2 TXs
Sum DoF transmitting with k = 3 TXs
Sum DoF transmitting with k = 4 TXs

Figure 4: Sum DoF of the K = 4 MISO BC with distributed
CSIT as a function of α(2), with α(1) = 1, α(3) = α(4) = 0.

A. Encoding

The transmission scheme consists in a single channel use
during which 3 private data symbols of α(1) log2(P ) bits are
sent to each user, thus leading to 9 data symbols being sent in
one channel use. Additionally, a common data symbol of rate
(1 − α(1)) log2(P ) bits is broadcast from TX 1 to all users
using superposition coding [49]. Note that the information
contained in this common data symbol is not only composed
of “fresh” information bits destined to one user, but is also
composed of side information necessary for the decoding
of the private data symbols, as will be detailed below. The
transmitted signal x ∈ C3 is then equal to

x = s1 + s2 + s3 +

1
0
0

 s0 (18)

where
• si ∈ C3 is a vector containing the 3 private data symbols

destined to user i, each one with power Pα
(1)

/9 and rate
α(1) log2(P ) bits.

• s0 is the common data symbol transmitted only from
TX 1 and destined to be decoded at all users, transmitted
with power P − Pα(1)

and rate (1− α(1)) log2(P ) bits.
The signal received at RX i, illustrated in Fig. 5, is given by

yi = Hi,1s0︸ ︷︷ ︸
.
=P

+ hH
i s1︸ ︷︷ ︸

.
=Pα

(1)

+ hH
i s2︸ ︷︷ ︸

.
=Pα

(1)

+ hH
i s3︸ ︷︷ ︸

.
=Pα

(1)

(19)

where the power scaling is written under the bracket, and
where the noise term has been neglected for clarity.

B. Interference Estimation and Quantization at TX 1

The key element of the scheme is that the common data
symbol s0 is used to convey side information, enabling
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Figure 5: Illustration of the received signals. Each RX receives its desired private data symbols and interference scaling both
in P̄α

(1)

. Through superposition coding, it also receives the common data symbol s0 containing a mix of fresh desired data
symbols (illustrated in white), and side information to remove interference (illustrated with the color of the relevant RX).

each user to decode its desired private data symbols. More
specifically, TX 1 uses its local CSIT Ĥ(1) to estimate the
interference terms (ĥ

(1)
i )Hsk generated by the first layer

of transmission, for any i, k such that k 6= i. Then, TX 1
quantizes and transmits these interference terms using the
common data symbol s0. Each interference term has a variance
scaling in P̄α

(1)

and is quantized using α(1) log2(P ) bits, such
that the quantization noise can be made to remain at the noise
floor using an appropriate uniform or Lloyd quantizer [49].
In total, the transmission of all the quantized estimated
interference requires a transmission of 6α(1) log2(P ) bits.

These 6α(1) log2(P ) bits can be transmitted via the data sym-
bol s0 if 6α(1) log2(P ) ≤ (1−α(1)) log2(P ), which is the case
for the example considered here since 6×0.1 < 1−0.1. If the in-
equality is strict (as it is in this case), s0 carries some additional
(1−7α(1)) log2(P ) fresh-information bits to any particular user.

C. Decoding and DoF Analysis

It remains to verify that this transmission scheme achieves
the claimed DoF. Let us consider w.l.o.g. the decoding at
RX 1, because the decoding at the other users is the same
up to a circular permutation of the RX’s indices. Note that
signals at the noise floor are systematically omitted.

Using successive decoding [49], the common data symbol s0

is decoded first, followed by the private data symbols s1.
The data symbol s0 of rate of (1 − α(1)) log2(P ) bits can
be decoded with a vanishing probability of error as its
effective SNR can be seen in (19) to scale in P 1−α(1)

. Upon
decoding s0, the quantized estimated interference (ĥ

(1)
1 )Hs2 is

obtained up to the quantization noise. RX 1 has then decoded

(ĥ
(1)
1 )Hs2︸ ︷︷ ︸
.
=Pα

(1)

= hH
1 s2 + P̄−α

(1)

(δ
(1)
1 )Hs2︸ ︷︷ ︸

.
=P 0

. (20)

Since the quantization noise is at the noise floor, it is neglected
in the following. This means that the interference term hH

1 s2

can be suppressed up to the noise floor at RX 1. Proceeding in
the same way with (ĥ

(1)
1 )Hs3, the remaining signal at RX 1 is

y1 = hH
1 s1. (21)

RX 1 can form a virtual received vector yv
1 ∈ C3 by bringing

together the signal in (21) and the interference terms (ĥ
(1)
2 )Hs1

and (ĥ
(1)
3 )Hs1 obtained through s0. Therefore, yv

1 ∈ C3 is
defined as

yv
1 ,

 hH
1

(ĥ
(1)
2 )H

(ĥ
(1)
3 )H

 s1. (22)

Each component of yv
1 has an effective SNR scaling in Pα

(1)

such that RX 1 can decode with a vanishing error probability
its 3 data symbols of rate α(1) log2(P ) bits.

If we take into account the 3 users, 9α(1) log2(P ) bits
have been transmitted through the private data symbols and
(1− 7α(1)) log2(P ) bits through the common data symbol s0,
which yields a sum DoF of 1 + 2α(1).

Remark 7. Interestingly, the above scheme is based on
interference estimation, quantization, and retransmission, in
a similar fashion as done in the different context of precoding
with delayed CSIT (see e.g. [6]–[8]). Yet, we exploit in this
work the distributed nature of the CSIT instead of the delayed
knowledge of the CSIT, such that the scheme estimates and
quantizes the interference before even being generated.

V. TRANSMISSION MODE (n, k)
WITH n ACTIVES TXS AND k TRANSMITTING TXS

We present in this section the Transmission Mode (n, k)
with n Active TXs and k Transmitting TXs. We describe
the main structure of the transmission in Section V-A, before
describing in detail the precoding scheme in Section V-B.
The received signal is then studied in Section V-C, and the
achieved DoF is computed in Section V-D and Section V-E.
As main insight, a transmission using n Active TXs can reduce
the interference power received at n RXs by a factor Pα

(n)

,
i.e., as n increases, it holds that:

• The interference power is reduced by a smaller factor.
• The interference power is reduced at more RXs.
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A. Encoding

The Transmission Mode (n, k) only considers k Transmitting
TXs, and thus only k RXs are served simultaneously. Let U
denote the set of RXs served and let us assume w.l.o.g. that
the served RXs are the k first users, such that U = {1, . . . , k}.
The transmitted signal x ∈ Ck is then given by

x =

[
1

0k−1×1

]
s0 +

k∑
i=1

TAPZF
i si (23)

where
• si ∈ Ck−n contains k − n data symbols destined to

RX i, which we hence denote as private, each one of rate
α(n) log2(P ) bits and power Pα

(n)

/(k(k−n)), distributed
in an i.i.d. manner. They are precoded with the AP-ZF
precoder TAPZF

i ∈ Ck×(k−n) with n active TXs as
described in detail in Section V-B.

• s0 ∈ C is a data symbol destined to be decoded at all
users and that we hence denote as common, transmitted
at rate (1− α(n)) log2(P ) bits and power P − Pα(n)

.
Note that k−n data streams are sent to each RX, but each RX

has only one antenna. This overloaded transmission is necessary
to take advantage of the k−n−1 interference terms generated
by the RX’s symbols at the other RXs, following the intuition
from [5] that interference can be used as side information. This
is detailed in Section V-C. A total of k(k−n)α(n) log2(P ) bits
are sent in one channel use through the private data sym-
bols. Furthermore, an additional data symbol of data rate
(1− α(n)) log2(P ) bits is broadcast from TX 1. Importantly,
we will show that this common data symbol s0 does not only
contain new information bits, but also side information to
enable the successful decoding of the private data symbols.

B. Precoding: AP-ZF with n Active TXs

The proposed precoder can be decoupled such that the
precoder for each RX is computed independently of the
other RXs up to a power normalization. We describe now
the AP-ZF precoder serving a specific RX i with n Active
TXs. This precoder allows us to transmit k − n streams to
RX i while reducing the interference at the n following RXs,
i.e., at RXs (i+ t) mod [k] + 1, ∀t ∈ {1, . . . , n}. For ease of
notation, we omit in the following the modulo operation as
it is clear what an index bigger than k refers to. The precoder
is obtained from distributed precoding at all TXs such that

TAPZF
i =


eT

1T
APZF(1)
i

eT
2T

APZF(2)
i

...
eT
kT

APZF(k)
i

 , (24)

where eT
` refers to the `-th row of the identity matrix Ik×k,

and T
APZF(j)
i denotes the AP-ZF precoder computed at TX j.

We will therefore consider the design of T
APZF(j)
i at TX j.

Remark 8. Note that, although TX j computes the full
precoder T

APZF(j)
i , only some coefficients are effectively

used for the transmission due to the distributed precoding
configuration, as made clear in (24).

k-n streams

Served RX n interfered users

n Active TXs k-n Passive TXs

K-n-1 interfered RXs

(Interference not reduced)
(AP-ZF reduces interference)

HA ∈ Cn×n
HP ∈ Ck−n×n

H ∈ Ck×n

Figure 6: AP-ZF illustration: The number of Active TXs (n)
determines the number of RXs at which the interference is
reduced, whereas the number of Passive TXs (k−n) determines
the number of data streams that each RX can receive.

As a preliminary, let us define the Active Channel
HA ∈ Cn×n as the channel coefficients from the Active TXs
(TX 1 to TX n) to the RXs whose received interference is
reduced (RX i+ 1 to RX i+ n), i.e.,

HA , Hi+1:i+n,1:n. (25)

Similarly, the Passive Channel HP ∈ Cn×(k−n) contains the
channel coefficients from the Passive TXs (TX n+1 to TX k) to
the RXs with reduced interference (RX i+ 1 to RX i+n), i.e.,

HP , Hi+1:i+n,n+1:k. (26)

The Passive TXs do not use their instantaneous CSIT. Hence,
the precoder applied at the Passive TXs (passive precoder) is
an arbitrarily chosen deterministic full-rank matrix denoted as
λAPZF
i TP

i ∈ C(k−n)×(k−n), where λAPZF
i is used to satisfy

an average sum power constraint and is detailed further down.
On the other hand, every Active TX j, ∀j ∈ {1, . . . , n},

computes T
APZF(j)
i ∈ Ck×k−n only on the basis of its own

available CSIT Ĥ(j), such that

T
APZF(j)
i = λAPZF

i

[
T

A(j)
i

TP
i

]
. (27)

The precoder applied at the Active TXs (active precoder) is
denoted as T

A(j)
i and computed as

T
A(j)
i = −

(
(Ĥ

(j)
A )HĤ

(j)
A +

1

P
In

)−1

(Ĥ
(j)
A )HĤ

(j)
P TP

i . (28)

Remark 9. The design of the active precoder in (28) is an
extension of the AP-ZF precoder introduced in [19]. Intuitively,
the n Active TXs invert the channel to the n chosen RXs so
as to cancel the interference generated by the Passive TXs.
The number of Passive TXs limits the rank of the transmitted
signal, while the number of Active TXs limits the number of
users whose received interference is attenuated.
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The AP-ZF precoder TAPZF
i ∈ Ck×k−n practically used

in the transmission and defined in (24) can be written as

TAPZF
i , λAPZF

i


eT

1 T
A(1)
i

...
eT
nT

A(n)
i

TP
i

 , (29)

where the normalization coefficient λAPZF
i is chosen as

λAPZF
i ,

1√√√√E

[∥∥∥∥[− (HH
AHA + 1

P In
)−1

HH
AHPTP

i

TP
i

]∥∥∥∥2

F

] .

The normalization constant λAPZF
i requires only statistical

CSI and can hence be computed at every TX, even the passive
ones. It ensures that an average sum-power normalization
constraint is satisfied, i.e., that

E
[
‖TAPZF

i ‖2F
]

= 1. (30)

The fundamental property of AP-ZF is that it effectively
achieves interference reduction at the n RXs up to the worst ac-
curacy across the Active TXs, as stated in the following lemma.

Lemma 2. The AP-ZF precoder with n Active TXs satisfies∥∥hH
` TAPZF

i

∥∥2

F
≤̇ P−α

(n)

, ∀` ∈ {i+ 1, . . . , i+ n}. (31)

Proof: The proof of Lemma 2 is given in Appendix I
along with the derivation of other important properties of
AP-ZF precoding.

C. Received Signals

The signal received at RX i is given by

yi = Hi,1s0︸ ︷︷ ︸
.
=P

+ hH
i TAPZF

i si︸ ︷︷ ︸
.
=Pα

(n)

+ hH
i

∑
`∈IAPZF

i

TAPZF
` s`

︸ ︷︷ ︸
.
=Pα

(n)

+ hH
i

∑
`∈U\IAPZF

i

TAPZF
` s`

︸ ︷︷ ︸
.
=P 0

, (32)

where the noise term has been neglected for clarity, and where
IAPZF
i is defined (omitting the modulo operation) as

IAPZF
i , {i+ 1, . . . , i+ k − n− 1} . (33)

Intuitively, the set IAPZF
i contains the interfering signals that

have not been attenuated towards RX i. The last term in (32)
scales as P 0 due to the attenuation produced by the AP-ZF
precoding, as shown in Lemma 2. In Fig. 7, we illustrate the
received signal at every RX for k = 3 RXs and n = 1 Active
TX. We can see the improvement with respect to Fig. 5 since
the number of significant interference terms is reduced by half
thanks to the AP-ZF precoding.

D. Decoding

TX 1 uses its local CSIT Ĥ(1) to estimate the interference
terms hH

i TAPZF
` s`, ∀` ∈ IAPZF

i . Each interference term
scales in Pα

(n)

. Therefore, each term can be quantized with
α(n) log2(P ) bits such that the quantization noise lies at
the noise floor [49]. Considering all users, this means that
k(k−n−1)α(n) log2(P ) interference bits have to be transmit-
ted. In order to do so, we use the broadcast data symbol s0. If
the quantity of information to be retransmitted exceeds the data
rate of s0, additional broadcast resources will need to be found
to enable the successful decoding of the private data symbol.
This is the essence of the linear optimization in Theorem 3 and
will be discussed further in Section VI. We assume here that
all the interference terms can be transmitted using the common
data symbol s0, and we will verify that it is indeed possible for
a given RX i to decode its (k − n)α(n) log2(P ) intended bits.

By using successive decoding, the data symbol s0 of rate
of (1 − α(n)) log2(P ) bits can be decoded with a vanishing
probability of error as its effective SNR can be seen in (32) to
scale as P 1−α(n)

. Upon decoding s0, we obtain the estimated
interferences (ĥ

(1)
i )HT

APZF(1)
` s`, for ` ∈ IAPZF

i , up to the
quantization noise at the noise floor. It then holds that

(ĥ
(1)
i )HT

APZF(1)
` s`

=
(
hH
i + P̄−α

(1)

(δ
(1)
i )H

)
T

APZF(1)
` s` (34)

= hH
i T

APZF(1)
` s` + P̄−α

(1)

(δ
(1)
i )HT

APZF(1)
` s` (35)

= hH
i TAPZF

` s` + hH
i

(
T

APZF(1)
` −TAPZF

`

)
s`, (36)

where (36) is obtained after omitting the second term of (35)
because its power scales as P−α

(1)

Pα
(1)

= P 0, i.e., it lies on
the noise floor. It holds that, ∀` ∈ {1, . . . , k},∀j ∈ {1, . . . , n},
the AP-ZF precoding satisfies the following property (see the
proof in Appendix I):

‖TAPZF(j)
` −TAPZF

` ‖2F ≤̇ P−α
(j)

. (37)

It follows from (37) that

hH
i

(
T

APZF(1)
` −TAPZF

`

)
s`

.
= P 0. (38)

Once we have subtracted the quantized interference terms, the
remaining signal at RX i up to the noise floor is

yi = hH
i TAPZF

i si. (39)

The key point of our approach is that RX i also receives
through the broadcast data symbol the interference created by
its own intended symbols at the other RXs, i.e., the estimated
interference terms (ĥ

(1)
` )HT

APZF(1)
i si, for any ` such that

i ∈ IAPZF
` (note the swap of indexes i-` with respect to

previous expressions). Each of those terms is an independent
linear combination of the symbols si, and thus RX i can form
a virtual received vector yv

i ∈ Ck−n equal to

yv
i ,


hH
i

(ĥ
(1)
i−1)H

...
(ĥ

(1)
i−(k−n−1))

H

TAPZF
i si. (40)
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Figure 7: Illustration of the received signals for the Weak-CSIT regime in the case of k = 3 Transmitting TXs and n = 1 Active TX.
Due to the AP-ZF precoding, the interference generated is reduced, and thus extra new information can be sent through s0 (white).

Each component of yv
y has a SINR scaling in Pα

(n)

and the
AP-ZF precoder is of rank k−n (See Lemma 4 in Appendix I)
such that RX i can decode its desired k − n data symbols,
each with the rate of α(n) log2(P ) bits.

Remark 10. The rank in (40) is ensured by the use of the
Passive TXs. Hence, it is interesting to observe how uninformed
TXs prove to be instrumental in the proposed scheme.

E. DoF Analysis

The transmission of the data symbols intended to RX i
creates |IAPZF

i | = k−n−1 interference terms, which gives in
total k(k−n−1)α(n) log2(P ) bits that need to be retransmitted.
Consequently, we define DoFInterf(-)

n,k as the DoF consumed in
order to transmit these interference terms and which is given by

DoF
Interf(-)
n,k , k(k − n− 1)α(n). (41)

In contrast, data symbol s0 carries (1 − α(n)) log2(P ) bits,
i.e., the DoF of the common data symbol DoFBC

n,k is given by

DoFBC
n,k , 1− α(n). (42)

Finally, considering the (k − n)α(n) log2(P ) private bits for
all k users leads to the private DoF denoted by DoFPriv

n,k and
defined as

DoFPriv
n,k , k(k − n)α(n), (43)

which is the DoF obtained from the private data symbols if
all the interference is canceled. Putting (41), (42), and (43)
together, the total DoF is

DoFn,k = DoFPriv
n,k + DoFBC

n,k −DoF
Interf(-)
n,k (44)

at the condition that DoFBC
n,k −DoF

Interf(-)
n,k ≥ 0, i.e., that all in-

terference terms could have been retransmitted. If this condition
does not hold, the retransmission of the interference is managed
through the time-sharing optimization of the different modes as
discussed in Section VI. Conversely, the optimal result of The-
orem 2 is achieved if the condition DoFBC

n,k −DoF
Interf(-)
n,k ≥ 0

is true for the Transmission Mode (m,K), where m is the

number of TXs with α(j) = α(1). By solving the inequality,
the maximum value of αWeak

m is obtained as

αWeak
m ,

1

1 +K(K −m− 1)
. (45)

VI. PROOF OF THEOREM 3

For a particular Transmission Mode (n, k), let us start by
defining dn,k as the difference between the DoF available in
the broadcast symbol s0 in (42) and the DoF consumed by
the interference to be retransmitted in (41), i.e.,

dn,k , DoFBC
n,k −DoF

Interf(-)
n,k (46)

= 1− α(n) − k(k − n− 1)α(n). (47)

It is not required that each Transmission Mode leads to the
transmission of all interference terms, which would imply that
every dn,k satisfies dn,k > 0. In fact, it is only necessary that
all interference terms were successfully transmitted at the end
of the time sharing between all Transmission Modes. Mathemat-
ically, this interference retransmission constraint is written as

K∑
k=2

k−1∑
n=1

γn,kdn,k ≥ 0, (48)

where γn,k is the time-sharing variable, such that γn,k ≥ 0

and
∑K
k=2

∑k−1
n=1 γn,k = 1. By taking into consideration this

constraint, the sum DoF can then be rewritten as

K∑
k=2

k−1∑
n=1

γn,k DoFn,k

=

K∑
k=2

k−1∑
n=1

DoFPriv
n,k + DoFBC

n,k −DoF
Interf(-)
n,k (49)

=

K∑
k=2

k−1∑
n=1

γn,k

(
1 + (k − 1)α(n)

)
. (50)

The optimal time allocated to each Transmission Mode is
obtained by solving the following optimization problem, which
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concludes the proof:

maximize
γn,k

K∑
k=2

k−1∑
n=1

γn,k

(
1 + (k − 1)α(n)

)
(51)

subject to

K∑
k=2

k−1∑
n=1

γn,k = 1, γn,k ≥ 0, (52)

K∑
k=2

k−1∑
n=1

dn,kγn,k ≥ 0. (53)

It is important to optimize over both the number of
Transmitting TXs and the number of Active TXs. As shown
in Fig. 4, using K Transmitting TXs can be detrimental
depending on the CSI allocation at each TX. The number of
Active TXs (n) controls how many RXs can have its received
interference attenuated and up to which level that interference
is reduced, while the number of Transmitting TXs (k) controls
how many users are served. Furthermore, the difference
(k − n) impacts on how overloaded the transmission is. For
example, setting k = n + 1 implies a single stream per RX,
and thus no overload. In this case, only n+ 1 RXs are served
simultaneously, and no interference is generated. Increasing k
while fixing n would increase the number of RXs served and
the interference generated, which can be beneficial thanks to the
fact that the retransmitted interference is useful for two RXs.

VII. CONCLUSION

We have described a novel D-CSIT robust transmission
scheme that significantly improves the achieved DoF with
respect to state-of-the-art precoding approaches when faced
with distributed CSIT. We have first derived an upper bound
coined as the centralized upper bound and consisting in a genie-
aided setting where all the channel estimates are made available
at all TXs. We have then shown how this genie-aided upper
bound was achieved by the proposed transmission scheme over
a range of CSIT configurations, the so-called “Weak-CSIT”
regime. Surprisingly, this upper bound can even be achieved
with the CSI being handed at a single TX, i.e., with all other
TXs not having access to CSIT. The proposed robust precoding
scheme relies on new methods, such as the transmission of the
estimated interference from a single TX before the interference
is generated, as well as a modified ZF precoding allowing for
an overloaded transmission. These new methods have a strong
potential in other wireless configurations with TXs having
access to different qualities of CSI. Converting these new
innovative transmission schemes into practical transmission
schemes in realistic environments is an interesting and ongoing
research direction. Such a robust precoding scheme could
yield important gains in practice and make advanced precoding
schemes more practical. Deriving tighter distributed upper
bounds is also an interesting and challenging research problem.

APPENDIX I
AP-ZF PROPERTIES

We start by showing some simple but important properties
of the AP-ZF precoder. We consider in the following the
precoder for a specific RX i’s data symbols. From symmetry,

the precoder satisfies the same properties for any RX, such
that we omit hereinafter the RX’s sub-index i for clarity.
Let us recall that the AP-ZF precoder aims to cancel the
interference out at only a subset of n RXs.

Lemma 3. Let H ∈ Cn×K denote the channel matrix towards
the n RXs whose received interference is reduced. With perfect
channel knowledge at all Active TXs, the AP-ZF precoder
with n Active TXs and K − n Passive TXs satisfies

HTAPZF? P→∞−−−−→ 0n×(K−n), (54)

where TAPZF? denotes the AP-ZF precoder according to the
description in Section V-B but based on perfect CSIT, and it
is given as

TAPZF? , λAPZF

[
TA?

TP

]
. (55)

Proof: Using the well known Resolvent identity [51,
Lemma 6.1], we can write that(

HH
AHA + 1

P In
)−1 −

(
HH

AHA

)−1

= −
(
HH

AHA

)−1 1

P
In
(
HH

AHA + 1
P In

)−1
. (56)

We can then compute the leaked interference as

HTAPZF? = λAPZFHATA? + λAPZFHPTP (57)
(a)
= λAPZFHA

(
HH

AHA

)−1 1

P
In

×
(

HH
AHA +

1

P
In

)−1

HH
AHPTP, (58)

where equality (a) follows from inserting (56) inside the
AP-ZF precoder and simplifying. By letting the available power
P tend to infinity, the leaked interference tends to zero.

Lemma 4. The AP-ZF precoder matrix with n Active TXs
and K − n Passive TXs is of rank K − n.

Proof: The passive precoder was chosen such that TP

is full rank, i.e., of rank K − n. For any Active TX j, the
precoder TA(j) is a linear function of TP, such that the
effective AP-ZF precoder TAPZF resulting from distributed
precoding is exactly of rank K − n.

A. Proof of Lemma 2

We follow a similar approach as in [19]. We can use once
more the resolvent identity [51, Lemma 6.1] to approximate
the matrix inverse and show that, for any j ≤ n,∥∥TAPZF(j) −TAPZF?

∥∥2

F
≤̇ P−α

(j)

. (59)

It then follows that∥∥HTAPZF
∥∥2

F
≤̇
∥∥H (TAPZF −TAPZF?

)∥∥2

F
(60)

≤̇ ‖H‖2F
∥∥TAPZF −TAPZF?

∥∥2

F
(61)

≤̇ ‖H‖2F
n∑
j=1

∥∥TAPZF(j) −TAPZF?
∥∥2

F
(62)

≤̇ P−minj∈{1,...,n} α
(j)

, (63)

where (60) comes from Lemma 3 and (63) follows from (59).
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Remark 11. The interference attenuation of AP-ZF is only
limited by the worst CSI accuracy among the Active TXs, and
it does not depend on the CSI accuracy at the Passive TXs.

APPENDIX II
PROOF OF LEMMA 1

We prove Lemma 1 (and so Theorem 1) for the broad general
case where the estimation noise random variables are mutually
independent and they are drawn from continuous distributions
with density. We first enunciate some definitions and assump-
tions that are taken on the random variables and their probability
density functions (pdf). Later, we prove the lemma for the
K = 2 users case and, to conclude, we prove the general K > 2
users case by induction. From the independence between differ-
ent channel coefficients, we can restrict ourselves to an arbitrary
link such that we omit the previously used sub-indexes i, k.

A. Proof of Lemma 1

1) Preliminaries:

We recall that the probability density function of a random
variable X is denoted as fX (x). Next, we introduce three
definitions that are necessary for the proof.
D1) ε-Support: For any ε > 0, the ε-support of a random

variable X is defined as

SεX , {x | fX (x) > ε}. (64)

D2) Bounded Support: A random variable X is said to have
bounded support if ∃MX <∞ such that x ≤ |MX | for
any x ∈ SεX and for any ε > 0.

D3) Bounded Probability Density Function: A random
variable X is said to have bounded probability density
function if there exists a constant fmax

X <∞ such that
fX (x) ≤ fmax

X for any x.

Furthermore, the following assumptions are adopted:

H1) H, ∆(j), ∀j ∈ K, are continuous random variables with
density that satisfy D2) and D3).

H2) P > 1 and 1 ≥ α(1) ≥ · · · ≥ α(K) ≥ 0.
H3) H, ∆(j), are independent of P , α(j).
H4) Hi,k is independent of Hi′,k′ , ∀(i, k) 6= (i′, k′).
H5) ∆

(j)
i,k is independent of ∆

(`)
i′,k′ , ∀(i, k, j) 6= (i′, k′, `).

From the above, H and ∆(j) satisfy Definition 1, ∀j ∈ K.
The K different estimates of H are K random variables
defined as Ĥ(j) , H + P̄−α

(j)

∆(j). Further, we denote
the samples drawn from the aforementioned variables as
h ∼ H, δ(j) ∼ ∆(j), ĥ(j) ∼ Ĥ(j), such that it follows that
ĥ(j) , h + P̄−α

(j)

δ(j). As a refresher, and because we will
make extensive use of it, we recall the well-known formula for
the pdf of a random variable multiplied by a positive constant.

Proposition 1. If X is a continuous random variable with
probability density function fX (x), then, for c>0, so is c · X
a continuous random variable with probability density function

fcX (x) =
1

c
fX

(x
c

)
. (65)

Furthermore, we present a useful lemma on the convergence
of the estimate variables Ĥ(j) that we apply during the proof.

Lemma 5. Let Ĥ(j), ∀j ∈ K, be defined from assumptions
H1)-H5), and consider that α(j) > 0. Then, fĤ(j) converges
almost surely to fH, i.e.,

lim
P→∞

fĤ(j)(x) = fH(x). (66)

Corollary 2. Let α(1) > 0. Then,

lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) = f∆(1)(y). (67)

Proof: The proof of both Lemma 5 and Corollary 2 is
relegated to Appendix II-B.

Finally, we recall here the Lebesgue’s Dominated
Convergence Theorem [52].

Theorem 4 ( [52, Theorem 16.4]). Let {fn} be a sequence
of functions on the measure space (Ω,Σ, µ), where Ω is a
non-empty sample space, Σ is a σ-algebra on the space Ω,
and µ a measure on (Ω,Σ). Suppose that

lim
n→∞

fn(x) = f(x) (68)

almost surely. Further suppose that exists an integrable
non-negative function G such that |fn(x)| ≤ G(x), ∀n,
almost surely. Then {fn} and f are integrable and

lim
n→∞

∫
Ω

fn(x)dµ(x) =

∫
Ω

f(x)dµ(x). (69)

2) Proof for the K=2 estimates Case:

We can write

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

=
fH,Ĥ(1),Ĥ(2)(h, ĥ(1), ĥ(2))

fĤ(1),Ĥ(2)(ĥ(1), ĥ(2))
(70)

(a)
=
fH,Ĥ(1)(h, ĥ(1))f

P̄−α
(2)

∆(2)(ĥ
(2) − h)

fĤ(1)(ĥ(1))fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
(71)

= fH|Ĥ(1)(h|ĥ(1))
f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
, (72)

where (a) comes from the independence between H, ∆(1),
∆(2). Furthermore, by applying Bayes’ formula we obtain that

fH|Ĥ(1)(h | ĥ(1)) =
f
P̄−α

(1)
∆(1)(P̄

−α(1)

δ(1))fH(h)

fĤ(1)(ĥ(1))
(73)

= P̄α
(1) f∆(1)(δ(1))fH(h)

fĤ(1)(ĥ(1))
, (74)

where (74) comes from Proposition 1. Let us consider
separately the cases where α(1) = 0 and where α(1) > 0.

a) α(1) = 0: In this case, (74) does not depend on P ,
since P 0 = 1, ∀P > 0. From H1), fH and f∆(1) are bounded
away from ∞. Moreover, if ĥ(1) ∈ SεĤ(1)

, then fĤ(1) is also
lower-bounded by ε. Thus,

max fH|Ĥ(1)(h | ĥ(1)) = O
(
P̄ 0
)
. (75)
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b) α(1) > 0: From Lemma 5, we have that fĤ(1)

converges almost surely (a.s.) to fH, and from H1) that
max f∆(1) <∞. Thus, from (74) it holds that

max fH|Ĥ(1)(h | ĥ(1)) = O
(
P̄α

(1))
. (76)

Hence, it follows from (75)-(76) that, in order to prove
Lemma 1, i.e., that

max fH|Ĥ(1),Ĥ(2) = O
(
P̄α

(1))
, (77)

we need to demonstrate that the limit

lim
P→∞

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

fH|Ĥ(1)(h|ĥ(1))
(78)

exists and is bounded away from 0 and ∞. First, note that
from (72) we have that

fH|Ĥ(1),Ĥ(2)(h|ĥ(1), ĥ(2))

fH|Ĥ(1)(h|ĥ(1))
=
f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
. (79)

Let us focus first on the denominator of the right-hand side
of (79). By taking into account again that ∆(j) is independent
of H, and that Ĥ(2) = Ĥ(1)− P̄−α(1)

∆(1) + P̄−α
(2)

∆(2), we
obtain that

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1))

= f
P̄−α

(2)
∆(2)−P̄−α(1)

∆(1)|Ĥ(1)(ĥ
(2) − ĥ(1) | ĥ(1)). (80)

Note that ĥ(2) − ĥ(1) = P̄−α
(2)

δ(2) − P̄−α(1)

δ(1). From the
independence of ∆(1) and ∆(2), (80) can be expressed as a
convolution such that

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1))

= f−P̄−α(1)
∆(1)|Ĥ(1) ∗fP̄−α(2)

∆(2)(ĥ
(2)−ĥ(1)|ĥ(1)) (81)

=

∫ ∞
−∞

(
f
P̄−α

(2)
∆(2)(ĥ

(2)−ĥ(1)−x)

× f−P̄−α(1)
∆(1)|Ĥ(1)(x|ĥ(1))

)
dx (82)

=

∫ ∞
−∞

(
P̄α

(2)

f∆(2)

(
P̄α

(2)

(ĥ(2) − ĥ(1) − x)
)

× P̄α
(1)

f−∆(1)|Ĥ(1)(P̄
α(1)

x | ĥ(1))
)

dx (83)

= P̄α
(2)

∫ ∞
−∞

(
f∆(2)

(
P̄α

(2)

(ĥ(2) − ĥ(1) − P̄−α
(1)

y)
)

× f−∆(1)|Ĥ(1)(y|ĥ(1))
)

dy, (84)

where (83) follows from applying the change of pdf of
Proposition 1 from f−P̄−α(1)

∆(1) to f−∆(1) , and (84) comes

from changing the integration variable to y = P̄α
(1)

x (and
thus dx = P̄−α

(1)

dy).
Note that, by applying ĥ(i) = h+ P̄−α

(i)

δ(i), it follows that
P̄α

(2)

(ĥ(2) − ĥ(1) − P̄−α(1)

y) = δ(2) − P̄α(2)−α(1)

(δ(1) + y)
for any y. Therefore, let us introduce the notation

υP (y) , f∆(2)

(
δ(2) − P̄α

(2)−α(1)

(δ(1) + y)
)

× f−∆(1)|Ĥ(1)(y|ĥ(1)). (85)

We can thus re-write (84) by means of (85) to obtain

fĤ(2)|Ĥ(1)(ĥ
(2) | ĥ(1)) = P̄α

(2)

∫ ∞
−∞

υP (y) dy. (86)

From (86) and by applying again the change of pdf of

Proposition 1 to the numerator, the term
f
P̄−α(2)

∆(2)
(ĥ(2)−h)

fĤ(2)|Ĥ(1) (ĥ(2)|ĥ(1))

can be expressed as

f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
=

f∆(2)(δ(2))∫∞
−∞ υP (y) dy

. (87)

From continuity of f∆(1) and f∆(2) , and Corollary 2, we
obtain the limit of υP (y) in (85) when P →∞. This limit has
two possible expressions depending on the relation between
α(1) and α(2). Specifically, it holds that

lim
P→∞

υP (y) = f∆(2)(δ(2)−δ(1) − y)f−∆(1)(y) (88)

if α(1) = α(2), and that

lim
P→∞

υP (y) = f∆(2)(δ(2))f−∆(1)(y) (89)

if α(1) > α(2). Now we prove separately each of the two
possible cases.

a) α(1) = α(2): From the Lebesgue’s Dominated
Convergence Theorem (Theorem 4), D3), and (88), the limit
exists and it holds that

lim
P→∞

∫ ∞
−∞

υP (y) dy = f−∆(1) ∗ f∆(2)(δ(2) − δ(1)). (90)

From (87) and (90), it holds that

lim
P→∞

f
P̄−α

(2)
∆(2)(ĥ

(2)−h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
=

f∆(2)(δ(2))

f−∆(1) ∗f∆(2)(δ(2)−δ(1))
. (91)

From D3), we have that, for any i ∈ {1, 2}, ∃fmax
∆(i) <∞ such

that f∆(i)(x) ≤ fmax
∆(i) ∀x. Then, it holds that

f−∆(1) ∗ f∆(2)(x) ≤ max(fmax
∆(1) , f

max
∆(2)). (92)

Conversely, let 1 be the indicator function and let then τ be

τ ,
∫ ∞
−∞

1x∈Sε
−∆(1)

× 1(δ(2)−δ(1)−x)∈Sε
∆(2)

dx. (93)

Then,

f−∆(1) ∗ f∆(2)(δ(2) − δ(1)) > ε2τ (94)

and τ > 0 if δ(1) ∈ Sε
∆(1) and δ(2) ∈ Sε

∆(2) . From (92) and
(94), (91) satisfies

ε

max(fmax
∆(1) , f

max
∆(2))

<
f∆(2)(δ(2))

f−∆(1) ∗ f∆(2)(δ(2) − δ(1))
<
fmax

∆(2)

ε2τ
.

This implies that max fH|Ĥ(1),Ĥ(2) = O
(
P̄α

(1))
(cf. (77)) and

thus the proof is concluded for the α(2) = α(1) case.
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b) α(1) > α(2): From the Lebesgue’s Dominated
Convergence Theorem and (89), the limit exists and it holds that

lim
P→∞

υP (y) =

∫ ∞
−∞

f∆(2)(δ(2))f−∆(1)(y) dy (95)

= f∆(2)(δ(2)). (96)

Applying (96) in (87) yields

lim
P→∞

f
P̄−α

(2)
∆(2)(ĥ

(2) − h)

fĤ(2)|Ĥ(1)(ĥ(2) | ĥ(1))
= 1, (97)

which concludes the proof of Lemma 1 for the 2-estimate case.

3) Proof for K > 2 estimates:

We prove by induction that Lemma 1 also holds for any
number K of estimates. We have proved that it is true for
the base cases K = 1 (trivial) and K = 2. In the following,
we prove the induction step. We denote the set of estimates
as GK , {Ĥ(1), . . . , Ĥ(K)} and, consistently, the set of given
values as gK , {ĥ(1), . . . , ĥ(K)}. Let us assume that Lemma 1
is verified for a given K. We consider K + 1 estimates.
Then, from the mutual independence of the estimation noise
variables ∆(j) and Bayes’ formula, we obtain that

fH|GK,Ĥ(K+1)

(
h | gK, ĥ(K+1)

)
=
fH,GK

(
h, gK

)
fGK (gK)︸ ︷︷ ︸
fĤ|GK

(ĥ|gK)

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK

(
ĥ(K+1)|gK

) . (98)

From the induction hypothesis, it holds that

max fH|GK(h | gK) = O
(
P̄α

(1))
. (99)

Thus, we need to prove that

0 < lim
P→∞

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK(ĥ(K+1)|gK)

<∞. (100)

Let us introduce the notation

∆′ , P̄−α
(K+1)

∆(K+1) − P̄−α
(1)

∆(1). (101)

By taking into consideration that

ĥ(K+1) − ĥ(1) = P̄−α
(K+1)

δ(K+1) − P̄−α
(1)

δ(1), (102)

the denominator of the expression in (100) can be rewritten as

fĤ(K+1)|GK

(
ĥ(K+1)|gK

)
= fĤ(1)+∆′|GK

(
ĥ(K+1) − ĥ(1) + ĥ(1) | gK

)
(103)

= f∆′|GK

(
P̄−α

(K+1)

δ(K+1) − P̄−α
(1)

δ(1) | gK
)

(104)

=f
P̄−α

(K+1)
∆(K+1)∗f−P̄−α(1)

∆(1)|GK

(
ĥ(K+1)−ĥ(1)|gK

)
(105)

where in (105) we have expressed f∆′|GK as a convolution
of pdfs. We follow the same steps as in (82)-(87) to obtain

f
P̄−α

(K+1)
∆(K+1)

(
ĥ(K+1) − h

)
fĤ(K+1)|GK

(
ĥ(K+1)|gK

)
=

f∆(K+1)

(
δ(K+1)

)∫∞
−∞ f∆(K+1)

(
δ′y
)
f−∆(1)|GK

(
y|gK

)
dy
, (106)

where we have introduced the notation

δ′y , δ(K+1) − P̄α
(K+1)−α(1)

(δ(1) + y) (107)

for ease of reading. We can see that (106) is equivalent to (87)
with ∆(K+1) in place of ∆(2). Then, by following the same
derivation as in the 2-estimate case, i.e., using Corollary 2 and
Lebesgue’s Dominated Convergence Theorem, we conclude
the induction step. From the base case and the induction step,
Lemma 1 is proven.

B. Proof of Lemma 5

Assuming α(i) > 0, we have that

lim
P→∞

fĤ(i)(ĥ
(i))

= lim
P→∞

fH+P̄−α
(i)

∆(i)(h+ P̄−α
(i)

δ(i)) (108)

= lim
P→∞

∫ ∞
−∞
fH(h+ P̄−α

(i)

δ(i)− x)f
P̄−α

(i)
∆(i)(x) dx (109)

= lim
P→∞

∫ ∞
−∞
fH(h+ P̄−α

(i)

δ(i)− P̄−α
(i)

y)f∆(i)(y) dy (110)

=

∫ ∞
−∞

fH(h)f∆(i)(y) dy (111)

= fH(h), (112)

where (110) comes from applying the relation between fP̄−αi∆i

and f∆i (see Proposition 1), and from the change of integration
variable y = P̄αix. Finally, (111) follows from applying
Lebesgue’s Dominated Convergence Theorem. Therefore,
fĤ(i) converges almost surely to fH and hence Lemma 5 is
proven. Then, in order to prove Corollary 2, i.e., that

lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K)) = f∆(1)(y), (113)

we apply Bayes’ formula to obtain

f∆(1)|Ĥ(1),...,Ĥ(K)(y|ĥ(1), . . . , ĥ(K))

=
fĤ(1),...,Ĥ(K)|∆(1)(ĥ(1), . . . , ĥ(K)|y)f∆(1)(y)

fĤ(1),...,Ĥ(K)(ĥ(1), . . . , ĥ(K))
(114)

=
fH,Ĥ(2),...,Ĥ(K)(h, h(2), . . . , h(K))

fĤ(1),...,Ĥ(K)(h(1), . . . , h(K))
f∆(1)(y). (115)

The fact that α(1) > 0 and (112) yield

lim
P→∞

fH,Ĥ(2),...,Ĥ(K)(h, h(2), . . . , h(K))

fĤ(1),...,Ĥ(K)(h(1), . . . , h(K))
= 1. (116)

By taking the limit on (115) and applying (116), it holds that

lim
P→∞

f∆(1)|Ĥ(1),...,Ĥ(K)(y|h1, . . . , hK) = f∆(1)(y), (117)

which concludes the proof.

APPENDIX III
PROOF OF COROLLARY 1

In this appendix we prove Corollary 1, i.e., that the
solution of Theorem 3 is composed of at most two phases
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(Transmission Modes). This is equivalent to prove that there
exist k1, k2 ∈ K, n1 < k1, n2 < k2 such that

γn1,k1 > 0,

γn2,k2 ≥ 0, (118)
γn,k = 0, ∀(n, k) 6= (n1, k1), (n2, k2),

is always an optimal solution of the maximization problem
stated in Theorem 3.

Let us denote the number of variables γn,k in the optimiza-
tion problem as D. From the problem definition, we know
that D =

∑K
i=2(i − 1) = K(K−1)

2 . In order to simplify the
notation, we denote the aforementioned variables with a unique
sub-index. Therefore, the variables {γn,k | k, n ∈ K, n < k}
become {γ̄i | i ∈ {1, . . . , D}}. For a given bijective function
f , the index i is defined as i , f(n, k). We can choose for
example the function f(n, k) = (k−1)(k−2)

2 + n.
We recall the optimization problem of Theorem 3 but, for

sake of clarity, we present it in vector notation. For that, let
the vector containing the time-sharing variables γ̄i be denoted
by γ, i.e., γ , [γ̄1, γ̄2, . . . , γ̄D]. Similarly, we define the
vector Fα as the concatenation of the effective DoF of each
Transmission Mode (see (15)), such that Fα , [Fα1 , . . . ,F

α
D],

and Fαi = 1+(k−1)α(n), with k, n given by (n, k) = f−1(i).
Finally, the vector of terms dn,k , 1−α(n)−k(k−n−1)α(n)

for the constraint (17) is denoted as d. Hence, the optimization
problem of Theorem 3 can be expressed as

DoFAPZF(α) = maximize
γ

Fαγ (119)

subject to ‖γ‖1 = 1 (120)
γ � 0 (121)
dγ ≥ 0, (122)

where Fα and d are constant vectors. Let us remind that if
a linear programming problem has an optimal solution then
it is an extreme point of the feasible set [53].

The feasible set given by conditions (120)-(121), which
is denoted by C, is the probability simplex [54] determined
by the unit vectors e1, . . . , eD ∈ RD, and consequently it
is a (D − 1)-dimensional simplex. On the other hand, (122)
represents a half-space determined by the vector hyperplane
[54] given by dγ = 0. The vector hyperplane dγ = 0 is
denoted as V . We can have different cases depending on how
the probability simplex C and the half-space determined by
the hyperplane V intersect. Namely:

1) If C ∩ {γ | dγ ≥ 0} = C (i.e., C is a subset of the
half-space), the feasible region is C and the extreme
points are the unit vectors ei. Therefore, the solution of
the problem uses only a single mode because the only
non-zero variable in a unit vector ei is the i-th variable.

2) If C ∩ {γ | dγ ≥ 0} = ∅, there is not feasible solution.
However, this is not possible since we have shown that
this linear program is always feasible, just choosing
γk−1,k = 1, with k ∈ {2, . . . ,K}.

3) If C ∩ {γ | dγ ≥ 0} ⊂ C, we need to prove that all the
extreme points of the resulting set satisfy (118). Those
extreme points will either be the extreme points of C
or belong to the intersection between C and V .

From linear algebra, we know that the intersection of
an l-dimensional and an m-dimensional sub-space in the
n-dimensional space Rn has dimension pi such that

pi ≥ l +m− n. (123)

Thus, in order to obtain the extreme points (pi = 0) of the
feasible set, we must obtain the intersection in the space RD
between V (m = D − 1) and the edges of C, i.e., the 1-faces
(segments) that define C. The edges of C are segments that
connect two points with a single non-zero variable (the unit
vectors), and therefore they belong to a line of only two
non-zero variables. Given that the intersection of V with one
edge must be a point of the edge, it holds that all the extreme
points have at most two non-zero variables, what means that
they satisfy (118). Therefore, Corollary 1 is proven. From the
previous analysis, it follows that the feasibility set is convex.

Moreover, as Theorem 3 is always composed of at most
two Transmission Modes, it can be expressed as the following
integer linear program:

maximize
k1,n1,
k2,n2

1 + ρ(k1 − 1)α(n1) + (1− ρ)(k2 − 1)α(n2)

subject to k1, k2 ∈ {2, . . . ,K},
n1 ∈ {1, . . . , k1 − 1},
n2 ∈ {1, . . . , k2 − 1} | dn2,k2

≥ 0,

where ρ is defined as

ρ ,

{
1 if dn1,k1 ≥ 0
dn2,k2

dn2,k2
−dn1,k1

otherwise.
(124)
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